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Insights from the theory of cryptography have led to profound developments in quantum informa-
tion science in the past decade. In particular, the cryptographic notion of security against compu-
tationally bounded adversaries is naturally aligned with the perspective of a quantum pragmatist:
which quantum properties can be efficiently observed or distinguished? The concept of pseudoran-
domness formalizes this question. In the classical setting, pseudorandom functions are efficiently
computable yet indistinguishable from truly random functions to any efficient adversary. In the
quantum realm, this idea extends to pseudorandom unitaries, which are efficiently constructible but
indistinguishable from Haar-random unitaries by efficient quantum algorithms. A more constrained
notion is pseudoentanglement, referring to ensembles of quantum states that appear genuinely en-
tangled to efficient observers. We summarize a small but significant subset of recent developments
in the theory of pseudorandom unitaries and pseudorandom states.

I. INTRODUCTION

Highly entangled quantum states—and, more gener-
ally, Haar-random unitaries—exhibit a range of power-
ful and theoretically useful properties. However, realiz-
ing such objects typically requires exponential resources,
rendering them infeasible to construct or manipulate in
practice. These systems are characterized by extremely
high entanglement, but this raises a natural question:
can such entanglement actually be observed or verified
efficiently? This question motivates a fundamental dis-
tinction between two types of properties: information-
theoretic and computational.

Information-theoretic properties describe what is pos-
sible in principle, assuming unbounded computational
resources and access to an infinite number of copies of
a quantum state. Quantities such as von Neumann en-
tropy, and other combinations of entropic measures, fall
into this category. They often have clear operational
interpretations, revealing what a state theoretically al-
lows in terms of communication, compression, or trans-
formation tasks. However, these interpretations make no
claims about the efficiency with which such tasks can be
carried out.

In contrast, computational properties refer to what
is achievable within bounded resources—typically mea-
sured in terms of time or memory as a function of input
size of the problem. They better reflect practical consid-
erations, since any real-world agent attempting to extract
or verify a property must operate under such constraints.
Crucially, this distinction implies that certain tasks may
be information-theoretically possible, yet computation-
ally infeasible. These limitations often rest on standard
assumptions from computational complexity or cryptog-
raphy.

Motivated by this distinction, we consider the problem
of efficiently observing or detecting quantum properties.
Specifically, we ask: given a quantum state promised to
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come from one of two possible ensembles, can an efficient
algorithm distinguish between them based on their en-
tanglement structure? More precisely, are there ensem-
bles of efficiently preparable quantum states that can-
not be efficiently distinguished from volume-law entan-
gled (i.e., Haar-random) states? Under widely believed
cryptographic assumptions, the answer is yes. This phe-
nomenon is known as pseudoentanglement.

We extend this idea further to the realm of unitaries.
We ask whether there exists an efficiently generable en-
semble of unitaries that is computationally indistinguish-
able from Haar-random unitaries. We refer to such ob-
jects as pseudorandom unitaries (PRUs). A PRU, if such
an object exists, creates a pseudoentangled state upon
application, and is thus a strictly stronger requirement.

Psuedorandom functions are classical objects which
look indistinguishable from truly random functions to
any polynomial time adversary [1]. In 2018, Ji, Liu, and
Song proposed that certain quantum states could be con-
structed efficiently and yet appear indistinguishable from
Haar-random states to any quantum polynomial-time ad-
versary [2]. Building upon this notion, Aaronson et al.
[3] introduced and proved some key results about pseu-
doentangled quantum states (PRS).

Then, PRUs were introduced as a natural extensions
of PRS, and also quantum counterparts of pseudorandom
functions. Follow up works [4, 5] provided constructions
of PRUs robust to parallel queries, where an adversary
queries all the copies at once. Then, the work of Ma and
Huang [6] provided a proof of adaptive security as well.
Quantum pseudorandomness has already been helpful in
making advances in black hole physics [7, 8], building on
the idea that Haar randomness, a previously conjectured
model of black holes, is inherently unphysical.

This article is structured as follows. We first discuss
notations and important preliminaries in Sec. II. No-
tably, we recap some results about designs in Sec. 11 B,
define the oracle access model in Sec. 11 C and discuss
some cryptographic primitives in Sec. II D. We then study
pseudoentangled states in Sec. III and pseudorandom
unitaries in Sec. V. Then, we discuss the compressed
oracle method in Sec. V. Finally, we discuss the adaptive
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security proofs with path recording oracles in Sec. VI.
We wrap up with outlook and discussions in VII.

II. PRELIMINARIES

A. Notations

Registers and states. A quantum system is said to
be a register, denoted X. For an n—qubit register with
X = [n], we have the associated Hilbert space Hx =
Qjex Hi with H; = C®2. Pure states on X live in the
Hilbert space, |1)y € Hx. Mixed states are unit-trace
positive-semidefinite operators px € D(Hx). For Y C X
we denote py := trx vy px. Lastly, we denote N = 2". Let
also Sym,, denote the symmetric group on n elements.

Entropies and Distances The von-Neumann en-
tropy of a state p € D(H) is defined as S(p) =
—Tr(plogp). The relative entropy of two states p,o €
D(H) is defined as S(p||o) = Tr(p(logp — loga)) > 0.
The trace distance between two states p, o is defined as
TD(p,0) = %||p — |1, where || X||; is the trace norm.

Asymptotic Notations We use the following asymp-
totic notations: f(n) = O(g(n)) if there exists a constant
¢ > 0 such that |f(n)| < c|g(n)| for all sufficiently large

n. We say f(n) = 0g(n)) if g(n) = O(f(n)). We say
f(n) = ©(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)).
We say f(n) = o(g(n)) if lim,—, f(n)/g(n) = 0. We
say f( ) w( (n)) if limy,— 00 f( )/g( ) = 00. We say
that f(n) = pol (n) if there exists a finite & > 0 such
that f(n) = O(n*). The polylog(n) class of functions is

defined similarly. We denote negl(n) to be the class of
functions that are o(1/n°) for all ¢ > 0, that is they are
negligible in the sense that they vanish faster than any
inverse polynomial.

B. Useful definitions and results

We first define the Haar measure, which formalizes the
notion of the uniform distribution over the unitary group.

Definition I1.1 (Haar measure). The Haar measure iy
on the n—qubit unitary group is the unique probability
measure pp on U(2™) satisfying

1. For any measurable set S C U(2") and any V €
U2") we have ug(VS) = pu(S) and py(SV) =
pr (S).

2. paUQ2") =1)

An information theoretic way of talking about ensem-
bles close to the Haar ensemble is the following.

Definition II.2 (Unitary t—design). We say that a dis-
tribution D on n— qubits is a unitary t—design if

Ey~p[U® @ U®] = / dup(U®* @ U®Y) (1)
u@m)

We will often refer to the notion of a 2—design, which
is an ensemble that agrees with the Haar random ensem-
ble up to two moments. The Clifford group forms a 2—
design. An important property that we shall use is now
discussed. Consider t groups of n qubits each. We define
a projector on the distinct subspace, which ensures all
the different blocks are ‘different” upon projecting.

Definition I1.3 (Distinct Subspace Projector).

Tpcist . Z |21 21| @ |22 X2 @ - -

x€[N]¢

® |z x| (2)

dist

Now, the following Lemma is exceptionally useful, as
it lets us assume t groups of n qubits are essentially in
the distinct subspace if they have been ‘twirled’ by a
2—design.

Lemma I1.1 (2—design collision probability). Let [1)) be
drawn from a two design D on n qubits (recall N := 2" ).
Then we have,
tr (]EwNDHdist |:W)><w‘®t:| Hdist) >1-— O(tQ/N) (3)
Thus, if we have t = poly(n), the bound is exponen-
tially tight.

C. Oracles and Adversaries

A n—qubit quantum oracle is essentially just a unitary
U. The idea is that adversaries can now have quantum
registers to coherently query and process the informa-
tion from oracles. The number of times the adversary
can access the oracle of interest is known as the query
complexity. A polynomial time, or ‘efficient,” adversary
is one which has poly(n) query complexity. Let us define
the adversary model more formally, specializing to two
natural cases.

Definition II.4 (Oracle Adversaries). Given a unitary
U on Ha, we define two adversary states:

(a) Parallel Adversary: Lett € N, and consider a
unitary circuit A on 'Hft, then the adversary state

18
WYY = W (U [0 (1)

(b) Adaptive Adversary: Let m,t € N. Then, a
t—query adaptive adversary is defined by a t—tuple

WO W WO on Hy @ Hp with Hp =
(C®2"”
t .
Wi =TT (Uawid) 042100 (5)

i=1

We show this schematically in Fig. 1.
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FIG. 1. Oracle Adversaries (a) Parallel Queries (b) Sequential (Adaptive) Queries

We consider ¢t = poly(n) as well as m = poly(n) for
efficient adversaries. The adaptive strategy is strictly
powerful than the parallel one, as the intermediate oper-
ations WX; Y can be treated as swaps and WX])B can take
the role of W. This only requires m = O(tn), which is
poly(n) as long as the number of queries is polynomial.
Moreover, the parallel adversary admits a much concrete
description in terms of the following mixed state

pe = Epyyee [[¥) (@] (6)

which is very useful, as one can prove properties of an
ensemble by showing that this mixed state is close to
the one with the desired property. This convenience is
harshly taken away for the adaptive setting, where the
object E[[WY) (WY|] intricately encodes the adversary
operations as well. We will discuss the more sophisticated
techniques recently developed to attack that object.

We briefly comment on the nature of oracles to be seen.
A prominent kind is quantumly-accessible classical ora-
cles. That is, for some classical function ¢ : {0,1}" —
{0,1}", the oracle O, implements,

Oy |2) |y) = |2} [y © g()) (7)

We note two important such objects. First is the phase
oracle defined for each f : {0,1}" — {0,1}, with the

action
Fylz) = (=1)/) |z) . (8)

It is not too hard to see that this is essentially same as
the Oy defined above, and starting the Y register in the
|—) state. Next up, we have the permutation oracle Py
defined for each m € Sym,, as

Tr—1(n)) (9)

We note that, whenever an adversary queries a random
oracle, the operational interpretation is at follows. One
fizes a sample of the oracle, and hands it to the adversary
repeatedly. This is not to be confused with sampling a
new random object at each query in a single run.

P, |J)1,JJ2, - ,xn> — ’xﬂq(l),xﬂﬂ(g), -

D. PRPs and PRFs

All the results discussed will depend on the existence
of quantum-secure pseudorandom functions (PRF) and
pseudorandom permutations. These are essentially effi-
cient objects which look random to any polytime quan-
tum adversary.

e Pseudorandom permutations (PRP). A fam-
ily of permutations [9]

P={m:{0,1)" 5 {0.)" [keki}  (10)

such that for a randomly chosen key k € Ki the
permutation 7 is computationally indistinguish-
able from a truly random permutation.

e Pseudorandom functions (PRF). A family of
functions [10]

F={fr:{0,1}" = {0,1} | k € K3} (11)

such that for a random k& € Ky the function fi
is computationally indistinguishable from a trule
randomf function.

Now, we define one-way functions. Classically, one way
functions are of the type OW : {0,1}* — {0,1}* with
the property that there exist deterministic efficient algo-
rithms to determine the output given the input. Cru-
cially, they cannot be inverted efficiently. This property
enables wide usage in cryptography. For our purposes,
we define quantum resistant one-way functions.

Definition I1.5. A quantum resistant one-way function
is an efficient classical function OWF : {0,1}* — {0,1}*
that cannot be inverted efficiently by any quantum adver-
sary, where X\ is the security parameter. Specifically, for
any poly-time adversary W,

P [OWF(W(X, OWF(z))) = OWF(z) : z + {0,1}*]
<negl(\) (12)



Now, the key result which enables much of recent ad-
vances in pseudo-quantum things is summarized as the
following theorem.

Theorem II.1 ([9, 10]). Quantum secure pseudorandom
permutations and pseudorandom functions exist assum-
ing the existence of quantum resistent one-way functions.

That is, all of the results rely on the widely-accepted
(but not proven!) cryptographic conjecture of the exis-
tence of one-way functions. We will see how the PRP and
PRF objects, presumably existing, are useful to construct
pseudoentangled states and pseudorandom unitaries. Of
course, the existence of one way functions is widely be-
lieved but not proven. The reader may note that proving
the former will prove P # NP.

III. PSEUDOENTANGLEMENT

We begin with some definitions of efficient state ensem-
bles. At the first order, we wish for our ensembles con-
sidered to be efficient. Borrowing some language from
cryptography, we make the following definition.

Definition III.1 (Efficient Ensemble). An efficient en-
semble of states on n—qubits is a set of states,

E=A{lvw) | ke K} (13)

such that given key k, there exists a polynomial depth
(local) quantum circuit that prepares |), and K =
{0, 1}poly(n)

The key can be considered an efficient ‘classical de-
scription’ of a chosen state in the ensemble. Now, we are
interested in constructing ensembles which ‘spoof’ entan-
glement. That is, they truly do not consist of a ‘large’
(volume-law) amount of entanglement, but to any physi-
cal observer, they are indistinguishable from a truly en-
tangled ensemble. We control the true entanglement by
a function f(n), and make the following definition.

Definition IIL.2 (f(n)—Pseudoentanglement). An en-
semble of states £ is said to be f(n)—pseudoentangled if,

1. It is an efficient ensemble.

2. With probability 1 — 1/ poly(n) over the choice of
key, for any bipartition A = A, U Ap with |AL| =
O(n) the state |1r) € € has entanglement entropy
O(f(n)).

3. No poly-time quantum algorithm can distinguish be-
tween a state from £ and a Haar random state,

(W(p) = W(0)| < negl(n) (14)

for p = Ed(len) Ge)®™] and o =
Epu[(10) (0))=7)] for p(n) = poly(n).

We stress that pseudoentanglement is an ensemble
property. It makes no sense to talk about a single state
to be pseudoentangled, a single state cannot spoof entan-
glement. The ensembles are thus important in making a
sensible definition. Now, we show that any pseudoentan-
gled ensemble has to have some amount of entanglement.
Specifically, it must be atleast log-law.

Lemma IIL.1. f(n) = w(logn)

Proof. Assume not. Then we have S(p) = O(logn). We
can perform the swap test on n/2 qubits, and trace the
rest out. Before we do that, note,

S(p) > Sa(p) (15)

where S5 is the second Renyi entropy. To see this, note
that

S(p) = — Z Ailog \i = E[—log(\)] > —log(E[A]) = Sa(p)

(16)
Now, the swap test outputs zero with probability 1/2 +
1/21+52(P) Thus, the Haar state results in 1/2 4 1/2"+!
and the ensemble has 1/2 4+ 1/ poly(n). Thus, the swap
test succeeds with inverse polynomial error, which is not
in negl(n) and thus violates the definition of pseudoen-
tanglement. O

Now, we consider the following ensemble, among the
first one to be proved pseudoentangled.

Definition ITI.3 (Subset Phase State). Consider a sub-

set S C {0,1}N and a function f : {0,1}¥ — {0,1}.
Define the subset-phase state

1
¥s.) = 73 > D) (17)

zes
We consider subsets S of size |S| = 2% the following
form for some £ < n. Let 7 € Sym,, be a permutation.
Now, define
S = {m(2, 090" | 2 € {0,1}"} (18)
How do we construct a subset-phase state |1g )7 Sup-

pose we are given the oracles Pr and Fy. Then, it is not
too hard to see that,

sy = FyPe (HEH(0)%)) = [Uny)  (19)

The ensemble that we are then considered with is (de-
noting K := 2¥)

Exc = {tbng) | f € [2V), 7 € sym,, S| S K} (20)

The associated keys for this ensemble would then be k =

(7, f)-



Theorem III.1 (Theorem 2.1 of [3]). For anyt < K <
N, if we define

pexc = Er g (1Y, Xtbr 1] (21)
and
P = By [NV, (22)
then,
2
(e <0 (). (23)

Hence, it is sufficient to choose K = w(poly(n)) to en-
sure that any polynomial time (parallel) adversary can-
not distinguish a Haar random state to a state from this
ensemble. In fact, one can tune the amount of entangle-
ment in the ensemble by varying the size K of the subset.
Concretely, we have [11]

Sa ~ min{log K, |A|log 2} (24)

Thus, w(poly(n)) < K < 2°") where the left inequal-
ity ensures f(n) = w(logn) and the right inequality en-
sures sub-volume-law entanglement. Recently, it has also
been shows that the phase is not exactly needed. That
is, a random subset ensemble with w(poly(n)) < K <
0(2"™/ poly(n)) are also pseudoentangled [12, 13].

We now complete an important step of the argument
of pseudoentanglement. The results up until now re-
lied on truly random functions f € [2V] and permuta-
tions m € Sym,,. Such objects are not efficient to be-
gin with. Instead, we replace them by their quantum-
secure pseudorandom counterparts [4]. Both PRFs and
PRPs have been shown to exist assuming the existence
of quantum resistant one-way functions [9, 10]. The ef-
fective key set for the subset phase ensemble would thus
be K := K1 x Ko, where K1 and Ky are the key sets of
PRF and PRP respectively. Without loss of generality
both I’y and Ko can be taken to have O(n) bits, leading
to K having a bit length O(n). Hence, we conclude the
following result.

Theorem III.2. Assuming the existence of quantum-
secure one-way functions, subset-phase states with K =
w(poly(n)) form a pseudoentangled ensemble.

IV. PSEUDORANDOM UNITARIES

Up until now, we explored pseudoentangled states,
which look indistinguishable from Haar random states
given access to polynomially-many queries. A natural
generalization of this is a stronger notion of pseudoran-
dom unitaries, which are in some sense the quantum ana-
logue of psuedorandom functions. Now, we begin the
hunt for efficient to construct unitaries which appear in-
distinguishable from any Haar random unitary to any
computationally-bounded adversary.

To begin with, we define a PRU. Note that we abuse
notation and use the same letters to denote unitary en-
sembles as used for state ensembles.

Definition IV.1 ((non-adaptive) PRU). An ensemble
of unitaries & = {Uy}x, for k € K = {0,1}PY™) s pseu-
dorandom if

1. For all keys k € K, there exists a poly(n) algorithm
that implements the unitary Uy.

2. For any adversary that makes t = poly(n) queries,
we have that,

’Ekelc ‘WtUk> <WtUk

~Evmpn V) (W] = nesi(n)
(25)

Now, we introduce the leading PRU candidate that
has been the focus of much recent work. First, we recall
that the group of Clifford unitaries on n—qubits forms
a 2—design. It turns out, when we combine the P, - F}
trick used for constructing (one class of ) pseudoentangled
states with the Clifford group, we get a PRU! Nonethe-
less, for later purposes it is useful to make this definition
for a general unitary ensemble D and specialize to the
Clifford group when needed.

Definition IV.2 (PFD Ensemble). Given m € Sym,,
f + {0,1}» — {0,1}, define the P, and F gates
as Frlz) = (1)@ |2) and Prlo1,22,...,2,) =
Tr(1)s Tx(2)s - - - Tr(n))- Lhen, for an ensemble of states
D, the PFD ensemble Eppp is defined as

EPFD = {Pﬂ'FfD | LS Symna f € {07 1}naD € Dn}
(26)
where each of m, f, D is chosen uniformly in the respective
spaces.

The PFC ensemble is obtained by choosing D to be
the uniformly random distribution over n—qubit Clifford
unitaries. The central result of Ref. [4] is that the PFC
ensemble forms a t—design for exponentially large ¢ with
negligibly small error.

Lemma IV.1 (PFC forms a very good t—design [4]). For
any t € N, consider the t—copy ensemble state pg(|¢)) =
Evee [U [¢) (¢| U] for any state |¢) onnt qubits. Then,
we have that

TD(pchuw»,pHaar(w))o( jﬁ) (27)

Almost there. We must derandomize the random per-
mutation and function objects just as before, and replace
them with their pseudorandom counterparts. We already
discussed the key set describing (7, f). Now, the Clifford
group on n—qubits consists of 20(n*) elements. Thus,
the PFC ensemble can be described efficiently with a key
length of O(n?). Thus, we have the following result.

Theorem IV.1. Assuming the existence of quantum-
secure one-way functions, the PFC ensemble is a PRU.



V. COMPRESSED PURIFICATIONS

The compressed purification (or compressed oracle)
technique introduced by Zhandry [14] is a contemporary
build-up of a very basic fact in quantum information:
two purifications of a (mixed) state are equivalent up to
a unitary on the purifying register. The reader may be
amused [15] to learn that this technique has also lead
to state-of-the-art bounds on noisy quantum metrology
[16, 17].

A. Warm-up example

Consider the phase state |¢;) on a register X, defined
as a subset-phase with the full subset S = {0,1}"V. Now,
suppose our goal is to evaluate the mixed state resulting
from randomizing over the f function,

p=Ey|{r) (Vs (28)

where the expectation is across the uniform distribution
over all functions. Note that each function f : {0,1}" —
{0,1} can be be written down as a 2V bit vector. By
introducting a fictional register F of N qubits, say, we
write down a purification of this mixed state [18] |¥)

> repn) 1¥g) [f). Note that tre(|¥)XV¥|) = p owing to
(f|f'y = 7. Now, (ignoring normalization)

=y

fe2r]

YDy @l (29)

z€[N]

We can rearrange the phase and arrive at,

0)= > o)

z€[N]

S (=D f)e (30)

felN]

where e, is a N bit canonical unit vector with one at po-
sition x € [N]. We see that this is >° (nj [2)x H®" [2)g.
Now, any unitary on the purification register alone does
not affect the state, and thus another equivalent purifica-
tion is ) [x)y |z)g. As a corollary, this shows that the
ensemble state is maximally mixed.

B. Purifying oracles

Let us consider an adversary interacting with an oracle
f:{0,1}"™ — {0,1}. As before, we represent every such
oracle as a vector f € {0,1}", thinking of this object as
living in a F register. Now, we claim that the following
are equivalent from the adversary’s point of view,

1. Oracle Queries. Sample a uniformly random f. On
each query, apply F to the register A.

2. Purified Oracle.  Initialize F in the uniform
state. On each query, apply |z),|f)p +

(_1)“1) |2) 4 | £)

The key idea is that measuring the F register in the be-
ginning (choosing a f) and in the end (the purified way)
are equivalent as the adversary does not have access to
the imaginary F register we cooked up. Now, the idea
of recording the queries is as follows. Suppose we start
with the following state (denoting the adversary register
as A),

[Wodar = D _|2)a® D If)e (31)

f

Then, after one query to the oracle we get,

[T)ar =D Wole)a Y (1)@ )¢ (32)
v f

We re-write this object by introducing an identity,
(1) e = D 21 )@ Wo lwo)y Y (=1)7") | f)p (33)
ToT1 f
Now, making the second query and rewriting again,

(Todpp = 3 |wa)g WEmWgme Y (—1)f @)/ )

ToT1T2 f
(34)
Hence, we build up the following general expression for
the purified state at ¢t queries

‘\I/t>A|: = Z—Fx,w |1't>A Z(_l)f.(ez()‘k“‘keztil) |f>F

f
(35)
here we have the Feynman path amplitude,
t
Fow = | [(@:lWilai1) (36)

i=1

The F state, upon applying H®N can be mapped to the
state ey, + €z, + ...€y,). This is much simpler to deal
with, as we can keep track of this state by just noting
the (at-most) ¢ locations where it has a one. With some
abuse of notation [19]

Uar = D Faow |2)p @ (w1, 20, 20))e  (37)

This is a fairly ‘clean’ description of a sequence of queries.
Now, the idea is that since the imaginary purification
register is not visible to the adversary, writing down this
state and tracing out the purification register is equiv-
alent to writing down the actual adversary state ‘Wto >
We formalize this in detail in the next section.

VI. TOWARDS ADAPTIVE PROOFS

In this section we discuss very recent progress using
the compressed oracle technique in proving the security



of PRUs against adaptive adversaries. This technique, as
a byproduct, furnishes a method to efficiently simulate
queries to a Haar-random oracle. This is useful, as the
method resulting is quite ‘direct,” and does not require
the typical representation-theory route to proving things
about Haar-random objects.

A. Path Recording Oracle

We define a t—relation as a tuple of the form R =
{(zs,y:) | i € [t], (zi,9:) € [N]?}. The set of t—relations
is denoted R;. We further denote the domain and image
of a relation as Dom(R) and Im(R) respectively. The
set of all injective relations, those with y € [NJ},, are
denoted R™. The relation state is defined as follows.

Definition VI.1 (Relation State). For a relation R €
R¢, we have

1
|R> ::N Z (P75(®P73/)|x17y17'”7xt7yt>EHRt
mTESym,

(38)
where N ensures normalization.

We now define the total relation register accounting
for all relation states of different sizes,

He == P Hre = P(CY @ V) (39)
t=1 t=1

The motivation for making these definitions is to form a
fairly-unifying description of compressed oracles that we
discussed in the previous section. With this, we define
the path recording oracle.

Definition V1.2 (Path Recording Oracle (PRO)). The
path recording oracle V- on a N dimensional register X is
a linear map on Hx @ Hr with Hg the relation register as
defined above. Its action for all R € R™ with |R| < N
is as follows:

1
VN —|R|
Y. lx®BU{(zy)hr (40)

y€e[N]Ly¢Im(R)

Wxr |z)x [R) g ==

where the normalization results from counting the number
of possible y values.

The space of states we are concerned with is & =
span{|z) ® |R) | |z) € CN,R € R™,|R| < N}. The
following lemma shows us that the PRO is a isometry on
this space.

Lemma VI.1 (Lemma 4.1 of [6]). The path recording
oracle V' is an isometry on the space S.

Now, we define the adversary state, but instead of the
query on a unitary U, we replace it with the PRO. Fur-
thermore, we define it for a general unitary G supported
on register A placed after the adversary, for a reason yet
to be explained. Recall that the adversary acts on AUB,
and the ‘main system’ is A. As before, R denotes the re-
lation register, and we start in the empty relation state.

Definition VI.3 (PRO Adversary State).

t
WYY =TT (Var - Ga - WAG-) (1000 @ 10)g @ 10),2)
i=1
(41)
Ezxplicitly, this is

—t)!
o) =St %

x€[N]t, y€[N]i,
|?Jt>A |‘FX7Y,W>B |(X,Y)>R (42)

with the path integral denoted,

[ Fxyw)g = (4] [H (|yz> (@ilp - Ga - WA(Q) |O>AB]

i=1
(43)
and the relation state (the ‘tag’),
1
X, =— PX|x)®@ PZly). (44
|(x,¥))r i > %) ly).  (44)

" meSym,

The fact that the path integral is a state on B is not
important, as B can be trivial and then the state becomes
the conventional path integral scalar.

Lemma VI.2 (Lemma 4.2 of [6]). Fort < N queries,
the adversary state |WtVG> s state with unit norm in

Hag @ Hr.

Now, the adversary cannot access information on the
purification register, hence, if viable information leaks
out purely into the purification register, the adversary
cannot be successful. This is formalized as the following
lemma.

Lemma VI.3 (Lemma 4.4 of [6]). For any unitary G on
A, we have

This is surprisingly useful, and follows from basic ar-
guments. Essentially, one has to show that

> [2)r@, ® (2] Ga = ZGRQI_ [2)r, @ (2]a (46)
and then use the explicit form discussed above. The im-

plication is profound, as, it follows that

trg ()WY 9 (WY C]) = trg (W)Y WY|) VG € L(Ha)
(47)



Now, we take G to be from a 2— design. We know
by Lemma 1.1 that twirling by a 2—design projects into
the distinct subspace upto an exponentially small error.
Hence, we have the following.

Corollary VI.1. Let D be any 2—design, and let C € D.
Now, define

p:=Ecup [|WtV'C><WtV'C|ABR] (48)

Then, we have that
di dist 2
TD (trR {H “’pHR(})} — trg [p]) < O(N) (49)

This enables us to show that queries to a Haar ran-
dom unitary can be efficiently simulated with the path-
recording oracle.

Theorem VI.1 (Efficient simulation of Haar-Random
Queries). Let W be a t—query adaptive oracle adversary

pw = IEUNMH |WtU><WtU|AB (50)

pv = trg (W YW | pr (51)
t2

TD(pw. pv) = o(N) (52)

The proof of this will follow from a more general result,
that we discuss in the next subsection. However, the
intuition is essentially resulting from taking care of the
collision probabilities, as enabled by Lemma II.1.

B. Purifying PFO

Now, extending our developments in the realm of com-
pressed purifications, we define two imaginary register P,
for the permutation, and F for the phase function as be-
fore. With this, we have the purified PF oracle as follows.

Definition VI.4 (Purified pf Oracle).

pfO [z)5 [f)E Im)p = (71)f(w) IT(@)alFelm)e  (53)

With this, we define the pf relation states, analogous
to the relation states before. Then, we will show that
queries to the pfO can be written down in terms of these
relation states.

Definition VI.5. For 0 < t < N,
{(z1,91)y .-, (Te,y¢)} € R we define

IPFR) o >

m€Symy, f€[2N]

and R =

Orr |T)p @ (—1)2i=1 f@D | £y

(54)

where the normalization factor is 1/4/2N - (N —t)!

Starting with the empty relation R = (), we note that
|PFg) is the uniform superposition over all functions and
permutations. Also, we note that for bijective relations,
the PF relation states are orthonormal. Then, we have
the following description of the purified oracle in terms
of the relation states.

Lemma VI1.4. We have the following action of the PF
oracle for 0 <t < N and R € Ry

pfO ) [PFR)pe =

\/7|R D 1904 |PFRO(@m) ) pr

Yy€E[N]
(55)
for all x € [N].
Proof.
(~1)f@ () Zémw —1)=i= e ) (56)

1S @@ |1y | e (57)

Z |y>A Z 67r,36y:7r(r)(_
y f

Now mnote that dy_ru) =
5y:7r(;r)57r,R = 57r,R57r,{(;E,y)}

(57“{(35",/)}, and thus
= 0 RU{(@.)}- 0

Now, if we replace queries with the pfO, then the ad-
versary state has the following form.

Definition VI.6 (PFO Adversary State).

poe) = I (PfO - Ga - WAZ-) (10)a5 © [PFa)er)

i=1
(58)
Ezxplicitly, this is

\/7 Z [Yye)a | Fx,y, W)g ’PF{(X y)}> (59)

x,y€[N]
with the path integral denoted,
t
[Py whg = (i [H () (@ila - Ga - Wi3 ) 10) g
- (60)

Now, we relate the path recording construction and the
PRO adversary with the pfO adversary. The key idea is
that there exists a bijection between the relation registers
if we have no collisions.

Lemma VI.5 (Relating PRO and pfO).
pression map Comp : Hp ® Hg — Hg as,

> |R) (PFg| (61)

ReRPi

Define a com-
Comp :=

Further, we define the distinct projector on PF relations

as
Hdlst L E

RERPY,|R|=t

|PFrRYPFR| (62)



Then, we have the following relation
Comp- (TIE" - [WE%) ) =il W) (63)
X

Hence, we can now show that upon projecting onto the
suitable distinct subspaces, the adversary’s view while
using the pfO is the same as that of the PRO.

Corollary VI.2.

poo = Ecp HthfOC><WEfOC (64)

oo

pv :=Ecop [|th.c><WtV.C|ABR] (65)

trpr (ﬁgilrstﬂpfoﬁgift) = trR (Hdiﬁgpvﬂdﬁg) (66)
RX RX
Now, a similar result as Lemma V1.3 holds for the pfO
oracle, hence we have the following corollary.
Corollary VI.3. Let D be any 2—design, and let C' € D.
Now, define

pi=Ecnp [|WEO7 ) WEOC (67)

‘ABPF}

Then, we have that
s t?
D (trpF [Hg}i—stpﬂglft] — trpp [P]) < O(N) (68)

Theorem VI.2. Let D be any 2—design and W be a
t—query adaptive oracle adversary with the mized state,

ow = Eoprn WOOW g (69)

Define the corresponding path recording state, upon trac-
ing out the relation register

pv = trg W YW | pr (70)

Then we have

(. pv) = 0 ) (1)

Proof. This follows by a series of triangle inequalities.
The PFD query state is a pfO state with G ~ D, which
by Lemma VI.3 can be approximated well within the dis-
tinct subspace. Then, we have shown that within the
distinct subspace the pfO query is approximated well by
the PRO query in the distinct subspace. Finally, we have
also shown that the support of PRO with the 2—design
is essentially in the distinct subspace. Lastly, since the G
unitaries can be distilled out on the relation register, by
eq. (46) the adversary view is the traced out state. Each
approximation was within a O(t?/N) error, thus we are
done. O

As a corollary, this also shows that queries to a Haar
random unitary are efficiently simulated through the
path recording oracle. This follows by the invariance
properties of the Haar equation, we have gy = PFupg.
Collecting these results together, we have the following.

Theorem VI.3. Pseudorandom unitaries with adaptive
security exist assuming quantum-secure one way func-
tions.

VII. CONCLUSIONS

Pseudorandom quantum ensembles are efficient object
which are indistinguishable from Haar random ensem-
bles given arbitrary polynomial queries by an adversary.
We briefly discussed the key techniques and results in
pseudoentangled quantum states and pseudorandom uni-
taries. All of these objects were shown to exist given
the widely accepted conjecture of quantum-secure one-
way functions. We discussed the key differences in proof
techniques between parallel and adaptive proofs. As a
byproduct, the compressed oracle technique has now fur-
nished a novel formalism to simulate queries to Haar ran-
dom unitaries, which may find applications in other areas
such as chaos and holography.
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